A Pattern Classification Distribution Method for Geostatistical Modeling Evaluation and Uncertainty Quantification
نویسندگان
چکیده
Geological models are essential components in various applications. To generate reliable realizations, the geostatistical method focuses on reproducing spatial structures from training images (TIs). Moreover, uncertainty plays an important role Earth systems. It is beneficial for creating ensemble of stochastic realizations with high diversity. In this work, we applied a pattern classification distribution (PCD) to quantitatively evaluate modeling. First, proposed correlation-driven template capture geological patterns. According dependency TI, region growing and elbow-point detection were launched create adaptive template. Second, combination clustering was suggested characterize realizations. Aiming at simplifying parameter specification, program employed hierarchical decision tree categorize structures. Third, designed stacking framework develop multi-grid analysis. The contribution each grid calculated based morphological characteristics TI. Our extensively examined by channel model, 2D nonstationary flume system, subglacial bed topographic Antarctica, 3D sandstone models. We activated programs produce experimental results indicated that PCD capable addressing multiple categories, continuous variables, high-dimensional
منابع مشابه
Modeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کاملModeling spatial distribution of Tehran air pollutants using geostatistical methods incorporate uncertainty maps
The estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. In this paper, we investigate the spatial distribution of three air pollutants in Tehran’s atmosphere: carbon monoxide (CO), nitrogen dioxide (NO2), and atmospheric particulate matters less ...
متن کاملAn Improved Fuzzy Neural Network for Solving Uncertainty in Pattern Classification and Identification
Dealing with uncertainty is one of the most critical problems in complicatedpattern recognition subjects. In this paper, we modify the structure of a useful UnsupervisedFuzzy Neural Network (UFNN) of Kwan and Cai, and compose a new FNN with 6 types offuzzy neurons and its associated self organizing supervised learning algorithm. Thisimproved five-layer feed forward Supervised Fuzzy Neural Netwo...
متن کاملmodeling spatial distribution of tehran air pollutants using geostatistical methods incorporate uncertainty maps
the estimation of pollution fields, especially in densely populated areas, is an important application in the field of environmental science due to the significant effects of air pollution on public health. in this paper, we investigate the spatial distribution of three air pollutants in tehran’s atmosphere: carbon monoxide (co), nitrogen dioxide (no2), and atmospheric particulate matters less ...
متن کاملdesigning and validating a textbook evaluation questionnaire for reading comprehension ii and exploring its relationship with achievement
در هر برنامه آموزشی، مهم ترین فاکتور موثر بر موفقیت دانش آموزان کتاب درسی است (مک دونو و شاو 2003). در حقیقت ، کتاب قلب آموزش زبان انگلیسی است( شلدن 1988). به دلیل اهمیت والای کتاب به عنوان عنصر ضروری کلاس های آموزش زبان ، کتب باید به دقت ارزیابی و انتخاب شده تا از هرگونه تاثیر منفی بر دانش آموزان جلوگیری شود( لیتز). این تحقیق با طراحی پرسش نامه ارزیابی کتاب که فرصت ارزیابی معتبر را به اساتید د...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2023
ISSN: ['2315-4632', '2315-4675']
DOI: https://doi.org/10.3390/rs15112708